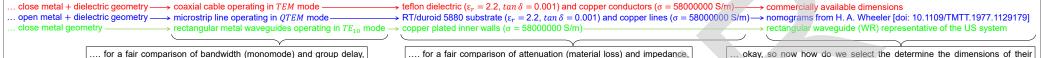


Comparison of legacy transmission lines from DC to mmWaves


Point 1: First and foremost what topologies are we considering here out of so many options? Only those which are strongly-established both in academic literature and in the commercial electronics market without an iota of a doubt:

 C_{xy} : Capacitance per unit length due

G_{rv}: Dielectric loss per unit length due

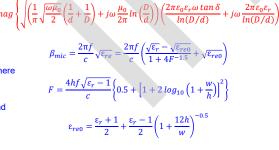
verse electric fields

transverse displacement current

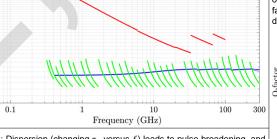
.... for a fair comparison of bandwidth (monomode) and group delay, the operation of the transmission lines in their corresponding fundamental modes have been considered here for a fair comparison of attenuation (material loss) and impedance, electrical properties of the physical building blocks (zero material dispersion) are made unform for all in the best possible way okay, so now how do we select the determine the dimensions of their cross-section? For a fair comparison, we go for the options as mentioned above. To the author's judgment, this is probably the most unbiased option ...

int	2: So from	the above discuss	sion in point	1, presented be	low a	are the ge	ometri	cal selection	s for compa	arison:		
		rectangular metal v		/1				coaxial cable				
_ Operational Metal Inner				11	Product co	de	Frequency (GI	Hz) ød (mm)	ØD (mm)			
Frequency band designations		frequency	waveguide	dimensions		RG 142 E	3/U	0-6	0.95	2.95		
		(GHz)	standard	(<i>mm</i> ²)	- 5	SR 141 M17	-QPL	0 – 20	0.92	2.99		
		0 - 0.000003	NA		-11-	MULTIFLEX	141	0 – 33	0.92	2.93		
/LF		0.000003 - 0.00003	NA			ULTIFLEX 8		0 – 67	0.47	1.48		
LF		0.00003 - 0.0003	NA			MULTIFLEX		0 – 100	0.31	0.99		
MF		0.0003 - 0.003	NA		-11-	Not availal	ble	0 – 300				
HF		0.003 - 0.03	NA			these dimer	neione f	or diameter of	inner conduc	tor (ad) and		
VHF		0.03 - 0.3	NA	504.00		outer conductor (@D) have been taken from catalogu						
		0.32 - 0.4	WR-2300	584.20 × 292.10		Huber+Shuner for 50 Ω cables with teflon dielectric at different operating frequency regime. finally, coming to microstrip geometry, using the nomogram from H. A. Wheeler on the commercially available substrate RT/duroid 5880, one would require the ratio of width of line to height of substrate to be around 3.11 to achieve 50 Ω characteristic impedance of the line.						
		0.35 - 0.53	WR-2100 WR-1800	533.40 × 266.70	ope							
		0.43 - 0.62		457.20 × 288.60								
		0.49 - 0.74	WR-1500	381.00 × 190.50								
		0.64 - 0.96	WR-1150	292.10 × 146.05								
JHF		0.75 - 1.1	WR-1000	253.36 × 126.68								
		0.96 - 1.5	WR-700 WR-650	195.58 × 97.79 165.10 × 82.55	-	okay, so with width of microstrip to height of substrate fixe						
	Dhand				we	we explore the possible substrate thickness available fro						
	R-band	1.7 - 2.6	WR-430	109.22 × 54.61		Rogers Corporation which are 0.005", 0.010", 0.020", 0.031", and 0.062" (" means milli-inches and remember that 1 milli-inch is 1/1000 times of an inch which is 2.54 cm). The question is which one to use and how to determine that?						
	D-band S-band	2.2 - 3.3	WR-340	86.36 × 43.18								
		2.6 - 3.95	WR-284	72.13 × 34.03								
SHF	E-band	3.3 - 4.9	WR-229	58.16 × 29.21	-	at this juncture, it becomes quite dicey and one needs to look beyond theoretical aspects. Here, in context to integrated PCB circuit design, we will consider the effects of surface waves, which is unwanted and increases with substrate thickness and with frequency. note that surface waves, in its fundamental TM_0 mode will always be present due to its DC cut-off frequency irrespective of anything else. But we can at least cut be the excitation of the first higher-order surface waves mode TE_1 by appropriately selecting a substrate thickness.						
	G-band	3.95 - 5.85	WR-187	47.54 × 22.14								
	F-band	4.9 - 7.05	WR-159	40.38 × 20.19								
	C-band	5.85 - 8.2	WR-137	34.84 × 15.79								
	H-band	7.05 - 10	WR-112	28.49 × 12.62								
	X-band	8.2 - 12.4	WR-90	22.86 × 10.16								
	X-Ku-band	10 - 15	WR-75	19.05 × 9.52								
EHF	Ku-band	12.4 - 18	WR-62	15.79 × 7.89	high							
	K-band	15 - 22	WR-51	12.95 × 6.47	sub							
	K-band	18 - 26.5	WR-42	10.66 × 4.31		in the table below some generic frequency ranges have been						
	Ka-band Q-band	26.5 - 40	WR-28 WR-22	7.11 × 3.55		determined based on the excitation cut-off of the first high-order						
	Q-band U-band	33 – 50 40 – 60	WR-22 WR-19	5.68 × 2.84 4.77 × 2.38		surface wave. Note that this is not a standardized protocol, however, has been assumed here for rationality. Otherwise, as required based on other attributes the choice for other substrate						
	V-band V-band				req							
	E-band	50 – 75 60 – 90	WR-15 WR-12	3.75 × 1.87 3.09 × 1.54		ght can be ex						
	E-band W-band	60 – 90 75 – 110	WR-12 WR-10	3.09 × 1.54 2.54 × 1.27	$+ \square$	h (mm)	$f_c(TE_1)$	(GHz) Fr	equency rang	e (GHz)		
	F-band	90 - 140	WR-10 WR-8	2.03 × 1.10	$+1^{-}$	1.575	43.4	47	0 – 40			
	P-band D-band	90 – 140 110 – 170	WR-8 WR-6	2.03 × 1.10 1.65 × 0.82	$+\square$	0.787	86.9	99	40 - 80			
	G-band	140 - 220	WR-6	1.29 × 0.64		0.508	134.	77	80 - 120)		
	G-Darid	140 - 220	WR-4	1.09 × 0.54		0.252	271.	68	120 – 25	0		
		220 - 325	WR-4 WR-3	1.09 × 0.54 0.86 × 0.43	⊕	0.127	539		250 - 30			
uni	t cell circuit dia	gram of rectangular metal v						of coaxial cables				
				field $H_{\rm x}$ generates		EM-mode	- agram		nce per unit			
1000	<u> </u>	this inductan	ice per unit lengt	ı, İİ		n		longitudinal o	onduction curre	nt component		
L _x	R _z	L _z : the longi	tudinal magnetic ice times unit len	field H _z generates	L _z				loss per unit			
	Ĩ		gitudinal curren	t J_z in the walls			J	longitudinal of	onduction curre	nt component		

es this resistance per unit length


the transverse current $J_x \& J_y$ in the v

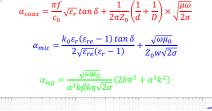
ates this resistance times unit length

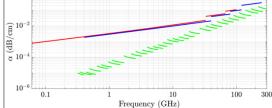

: the transverse electric field E_{y} ge

this capacitance per unit length

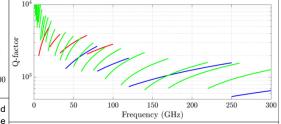
over frequency which is addressed as effect of dispersion. Theoretically, it
is formulated from phase constant as $\tau_g = (\partial \beta / \partial f)^{-1}$. The formulations for
phase constant of a microstrip line is cited to E. Yamashita, et al., [doi:
10.1109/TMTT.1979.1129787], while it is purely textbook academics
formulations for the coaxial cable and the metal waveguide:
$\beta_{coax} = Imag\{\gamma\} = Imag\{\sqrt{(R+j\omega L)(G+j\omega C)}\} =$

 $\beta_{wg} = \sqrt{\omega^2 \mu_0 \varepsilon_0 - (\pi/a)^2}$


Point 4: Dispersion (changing τ_g versus f) leads to pulse broadening, and hence inter-symbol interface (ISI) over the waveguide link. The pulse duration, T_b , (separation between two bits) must be longer than group delay over the physical waveguide channel to prevent this mutual overlap at the end of the link. Thus, the maximum channel capacity (C, bits/s) will be limited by the dispersion and the length of the waveguide link (l) and the expressed as


$$C = \frac{1}{T_b} \le \frac{1}{\left(\tau_{g,max} - \tau_{g,min}\right) \times l}$$

here, $\tau_{g,max}$ and $\tau_{g,min}$ are the the maximum and minimum group delay the other just because of some performance gap. er unit length, respectively, over the operational bandwidth.


.... note that for any practical link design, the operational bandwidth will be limited by a lot of constraints like attenuation, input and output impedance matching, sensitivity of the system, noise floor, etc.

int <u>3</u>: For practical purpose one is interested in group delay variation for prequency which is addressed as effect of dispersion. Theoretically, it follows (here the symbols have their usual meanings as designated formulated from phase constant as $\tau_g = (\partial \beta / \partial f)^{-1}$. The formulations for loss and microwave engineering textbook):

Point 6: One very important property without which the discussion on transmission line will never be complete is its quality-factor (Q-factor), which can be estimated analytically as $Q = \beta \times (2\alpha)^{-1}$. The data obtained from point 3 and point 4 models the Q-factor as:

Point 7: Talking as conclusion

10

.... In terms of power loss and information loss over propagation in the transmission lines, metal waveguides and microstrip lines provides the best performance, respectively.

.... It is scholarly and aspiring to do such comparisons, but on a practical sense one can never replace one transmission line with the other just because of some performance gap.

.... This is because of other aspects that are not discussed here which includes power handing capacity, cost, system assembly, form factor, electronic packaging, those that are difficult to be justified by a theoretical model.